3.235 \(\int \sec ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=122 \[ -\frac {(a-3 b) (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{8 b^{3/2} f}+\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{4 b f}-\frac {(a-3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{8 b f} \]

[Out]

-1/8*(a-3*b)*(a+b)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(3/2)/f-1/8*(a-3*b)*(a+b+b*tan(f*x
+e)^2)^(1/2)*tan(f*x+e)/b/f+1/4*tan(f*x+e)*(a+b+b*tan(f*x+e)^2)^(3/2)/b/f

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4146, 388, 195, 217, 206} \[ -\frac {(a-3 b) (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{8 b^{3/2} f}+\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{4 b f}-\frac {(a-3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{8 b f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^4*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-((a - 3*b)*(a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*b^(3/2)*f) - ((a - 3*b)
*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(8*b*f) + (Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/(4*b*f
)

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rubi steps

\begin {align*} \int \sec ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx &=\frac {\operatorname {Subst}\left (\int \left (1+x^2\right ) \sqrt {a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 b f}-\frac {(a-3 b) \operatorname {Subst}\left (\int \sqrt {a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{4 b f}\\ &=-\frac {(a-3 b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 b f}+\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 b f}-\frac {((a-3 b) (a+b)) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b f}\\ &=-\frac {(a-3 b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 b f}+\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 b f}-\frac {((a-3 b) (a+b)) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 b f}\\ &=-\frac {(a-3 b) (a+b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 b^{3/2} f}-\frac {(a-3 b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 b f}+\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 8.13, size = 390, normalized size = 3.20 \[ -\frac {i e^{i (e+f x)} \cos (e+f x) \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (\frac {\left (a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}\right )^{3/2}}{\left (1+e^{2 i (e+f x)}\right )^3}-\frac {2 \left (a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}\right )^{3/2}}{\left (1+e^{2 i (e+f x)}\right )^4}+\frac {1}{2} (3 b-a) \left (\frac {\left (-1+e^{2 i (e+f x)}\right ) \sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}{\left (1+e^{2 i (e+f x)}\right )^2}+\frac {(a+b) \tan ^{-1}\left (\frac {\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )}{\sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}\right )}{\sqrt {b}}\right )\right ) \sqrt {a+b \sec ^2(e+f x)}}{2 \sqrt {2} b f \sqrt {a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}} \sqrt {a \cos (2 e+2 f x)+a+2 b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^4*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

((-1/2*I)*E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*((-2*(4*b*E^((2*I)*(
e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2)^(3/2))/(1 + E^((2*I)*(e + f*x)))^4 + (4*b*E^((2*I)*(e + f*x)) + a*(
1 + E^((2*I)*(e + f*x)))^2)^(3/2)/(1 + E^((2*I)*(e + f*x)))^3 + ((-a + 3*b)*(((-1 + E^((2*I)*(e + f*x)))*Sqrt[
4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])/(1 + E^((2*I)*(e + f*x)))^2 + ((a + b)*ArcTan[(Sqrt[
b]*(-1 + E^((2*I)*(e + f*x))))/Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]])/Sqrt[b]))/2)*Co
s[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2])/(Sqrt[2]*b*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2
]*f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 390, normalized size = 3.20 \[ \left [-\frac {{\left (a^{2} - 2 \, a b - 3 \, b^{2}\right )} \sqrt {b} \cos \left (f x + e\right )^{3} \log \left (\frac {{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) - 4 \, {\left ({\left (a b + 3 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{32 \, b^{2} f \cos \left (f x + e\right )^{3}}, -\frac {{\left (a^{2} - 2 \, a b - 3 \, b^{2}\right )} \sqrt {-b} \arctan \left (-\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{3} - 2 \, {\left ({\left (a b + 3 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{16 \, b^{2} f \cos \left (f x + e\right )^{3}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/32*((a^2 - 2*a*b - 3*b^2)*sqrt(b)*cos(f*x + e)^3*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*c
os(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)
^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - 4*((a*b + 3*b^2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 +
b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*cos(f*x + e)^3), -1/16*((a^2 - 2*a*b - 3*b^2)*sqrt(-b)*arctan(-1/2*((a
 - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x +
e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e)^3 - 2*((a*b + 3*b^2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 +
b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*cos(f*x + e)^3)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sec \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sec(f*x + e)^4, x)

________________________________________________________________________________________

maple [C]  time = 1.72, size = 1769, normalized size = 14.50 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

1/8/f*sin(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1/2)*(-2*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*
b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(
f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f
*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a
+b))^(1/2))*cos(f*x+e)^4*sin(f*x+e)*a^2+4*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e
)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*
x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2
)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*cos(f*x
+e)^4*sin(f*x+e)*a*b+6*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))
/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*
EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b
),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*cos(f*x+e)^4*sin(f*x+e)*b^
2+2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*
a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x
+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b
^2)/(a+b)^2)^(1/2))*cos(f*x+e)^4*sin(f*x+e)*a^2-2*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*c
os(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(
1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I
*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*cos(f*x+e)^4*sin(f*x+e)*a*b-3*2^(1/2)*((I*
a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2
)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(
1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(
1/2))*cos(f*x+e)^4*sin(f*x+e)*b^2+((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^5*a^2+3*cos(f*x+e)^5*((2*
I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^4*a^2-3*cos(f*x+e)^
4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^3*a*b+3*cos
(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2-3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*x+e)^2*a
*b-3*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2+2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*cos(f*
x+e)*b^2-2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2)/(-1+cos(f*x+e))/(b+a*cos(f*x+e)^2)/cos(f*x+e)^3/b/((2*
I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 173, normalized size = 1.42 \[ -\frac {\frac {{\left (a + b\right )} a \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{b^{\frac {3}{2}}} + \frac {{\left (a + b\right )} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} - \frac {4 \, a \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} - 4 \, \sqrt {b} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) - 4 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} \tan \left (f x + e\right ) - \frac {2 \, {\left (b \tan \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}} \tan \left (f x + e\right )}{b} + \frac {\sqrt {b \tan \left (f x + e\right )^{2} + a + b} {\left (a + b\right )} \tan \left (f x + e\right )}{b}}{8 \, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

-1/8*((a + b)*a*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b))/b^(3/2) + (a + b)*arcsinh(b*tan(f*x + e)/sqrt((a + b)*
b))/sqrt(b) - 4*a*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b))/sqrt(b) - 4*sqrt(b)*arcsinh(b*tan(f*x + e)/sqrt((a +
 b)*b)) - 4*sqrt(b*tan(f*x + e)^2 + a + b)*tan(f*x + e) - 2*(b*tan(f*x + e)^2 + a + b)^(3/2)*tan(f*x + e)/b +
sqrt(b*tan(f*x + e)^2 + a + b)*(a + b)*tan(f*x + e)/b)/f

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}}{{\cos \left (e+f\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(e + f*x)^2)^(1/2)/cos(e + f*x)^4,x)

[Out]

int((a + b/cos(e + f*x)^2)^(1/2)/cos(e + f*x)^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \sec ^{4}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**4*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*sec(e + f*x)**4, x)

________________________________________________________________________________________